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A Note on Trapping Moving Vortices

Hsiao C. Kao
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Summary

The topic of stationary configurations of point vortices, also known as vortex equilibrium, has received consid-
erable attention in recent years. By observing numerical results, it is found that a “counterpart” of this system also
exists, in which moving vortices may be “trapped” by an inlet-like device to form a stationary pattern with no trans-
lational motion. After an intuitive explanation for the process, vortex trajectory maps based on numerical results
are presented. These maps exhibit two stationary points under the present conditions, which are the focal points of
vortex trajectories. A vortex upstream of these points, if within a certain offset range, will move towards these points
spontaneously and be captured there. This proposed device is also capable of trapping spinning vortex pairs and
triads. It is possible to impose a uniform stream at infinity, as long as the flow field is still dominated by the moving
vortices.

1. Introduction

In view of the fact that vortices are considered to be the “sinews and muscles” of fluid dynamics and often used
for aerodynamic performance improvements, the study of vortex dynamics has received enduring attention. New
applications and properties have been uncovered. In a review paper by Aref, Kadtke, Zawadzki, Campbell and
Eckhart (1988), the authors discussed the topic of vortex equilibrium, in which n point vortices of strength +1 and
m point vortices of strength –1 form a completely stationary system with no translational motion.

Numerical results obtained in this study suggest that a “counterpart” of this system also exists, in which moving
vortices may be “trapped” by an inlet-like device to form a stationary configuration with no translational motion. In
order to illustrate this situation, we go to figure 1. In this figure, a pair of spinning vortices moving from left to right
in a body of otherwise still fluid is being trapped by the device. The dashed line at the bottom is the ground surface.
Thus, there is an image system below the surface. If no device is present, this pair of free spinning vortices translates
parallel to the surface at a constant speed. When a device is introduced, an interaction takes place. In this case, the
free vortices establishes the flow field and the combined effect of the vortices and the device determines the vortex
paths. This assumption of no free stream velocity may be removed as long as the dominant flow field is still due to
free vortices. A brief discussion and some numerical results will be given later. This situation is somewhat similar to
Foppl’s standing vortex pair behind a circular cylinder (Saffman, 1992).

The vortex pair in figure 1 is of the same strength and same sense, spins about its centroid and moves down-
stream at the same time. If its initial position is within a certain offset distance from the device centerline, it is liable
to be trapped. A heavy black circle in the plot is a testimony of this state, in which two vortices rotate about an es-
sentially stationary centroid. The pattern in figure 1 represents the vortex trajectory paths after 9800 time steps. Al-
though it needed only 3200 time steps to reach the stationary zone, the extra 6600 steps were added to demonstrate
the immobility of the centroid. Here we use a spinning pair to bring out a more dynamic picture, even though a
single vortex is the main topic of this note.

We now give an intuitive explanation of this process with a single moving vortex. To do this, we refer to the
surface vorticity method for the potential flow by Martensen (1959). In addition to this original work, there are
many papers dealing with this method but we cite only Lewis (1981 and 1991). For calculating the potential flow
around one or more arbitrary bodies, this method places a continuous distribution of vorticity elements on the body
surfaces to separate the outer flow from the inner region of zero velocity. In the present case of zero free stream
velocity, the potential flow is due solely to the moving vortices. Thus, the strengths of these surface vorticity ele-
ments have to adjust continuously to satisfy the surface condition and are functions of time. Therefore, it is conceiv-
able that at a particular instant one or more locations may exist, where the induced velocities form various sources
cancel one another giving rise to stationary points.
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2. Surface Vorticity Method

For the purpose of explanation and to make this presentation more complete, a brief description of this method
is given. A more complete account can be found elsewhere, for instance, in Lewis (1991). The complex potential
given in equation (1) represents the flow field of free vortices in the presence of bodies. The terms in this equation
comprise M surface vorticity elements of unknown strengths γm and N free vortices of given strengths Γj
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where z = x + iy represents a point in the flow field, zm = xm +iym refers to the midpoint in the surface element sm,
whose vorticity strength per unit length is γm, and dsm is the length of this element (fig. 2). The symbol zj = xj + iyj
refers to the location of Γj. The circulation γm or Γj is defined to be positive when clockwise in accordance with
Lewis’ convention. The total number of surface vorticity elements is M, which may be the sum of several bodies.
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In these two equations as well as in equation (1), variables are given in dimensionless quantities. The characteristic
length is L, the length of the body, and the characteristic velocity is Γo/L, where Γo is the representative strength of a
free vortex. If we replace x and y in equation (2), which is a field point, by xn and yn, the coordinates of the surface
element sn (fig. 2), and impose the Dirichlet condition that the internal tangent velocity component is zero, equa-
tion (2) become equations (3), which can be used to determine the unknowns γm in equation (1).
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Here Kb(  ) and Kv(  ) are two influence coefficients representing the tangential velocity components at sn induced by
other surface vorticity elements and by free vortices respectively. The symbol Rn is the radius of curvature at sn and
θn the tangential angle (fig. 2). The second term in the first equation accounts for the self-induced velocity of γn at
element sn.



NASA/TM—2000-209270      3

Equations (3) are a linear system of M equations for M unknowns, which can be solved by any standard method.
The Gaussian elimination method was used for every example shown here.

With the quantities γm determined, one can use equations (2) to calculate the convective velocities for vortex Γk
by changing z to zk, where zk is the position of Γk at the instant t. The evolution of zk is then given by

dx

dt
u
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dt
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k
k

k= =, .

For a system of N vortices, there are 2N such equations, whose solutions give the vortex paths. At each time step one
has to update γm, which requires solutions to equations (3). A second-order method is used here for calculating the
time development from t to t + ∆t.
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If the vortices are sufficiently far from the body, it is adequate to calculate vortex paths based on the above pro-
cedure. However, if they approach sufficiently close to the surface, accuracy may deteriorate, and precautions
should be taken to remedy the situation. Lewis (1991) suggested a few such remedies, which will be followed
closely in this note. Some details will be given later.

Before proceeding to solve equations (2) to (4) for a given geometry, it is essential to make a comparison
between the exact and numerical predictions. Although it is more convenient to consider a single point vortex in a
uniform stream past a circular cylinder, which has exact solutions for any given vortex position, this is not a good
comparison, because the vortex motion is partially driven by the free stream. A more stringent test for the present
investigation is to consider the trajectories of a vortex pair near an orifice in an infinite body of otherwise still fluid,
which was studied by Sheffield (1977). This case is akin to the present investigation, because the presence of free
vortices creates the velocity field, and the combined effect of vortices and the orifice determines the vortex paths.

Sheffield considered three cases and had graphical representations for two. His figures contain, however, no
numerical information, which makes comparison virtually impossible. For this reason, we recomputed the trajecto-
ries in one of his cases by solving numerically the equations given in his paper, which are shown as two dotted lines
in figure 3 for two different initial positions, corresponding to those in his figure 2. Although these curves are
numerically generated, the governing equations are based on the Schwarz-Christoffel transformation and are exact.
By contrast, two solid-line curves in figure 3 obtained by the surface vorticity method are totally numerical. The
close agreement in figure 3 suggests that the present method is capable of predicting vortex trajectories in the pres-
ence of two bodies (two parts of the orifice). A few particulars are perhaps pertinent. The smallest interval between
elements is 0.03L, with L being the half width of the orifice, and the total number of vorticity elements is 144 with-
out recourse to the symmetry property. (Only the lower half is plotted in fig. 3.)  A slightly better agreement can still
be expected, if surface elements are placed more densely near the sharp corners.

3. Geometries of Proposed Device

In order to find locations of stationary points for moving vortices, we begin with the geometry. Two such con-
figurations are shown in figures 4. The device in figure 4(a) is labeled as model A, which is symmetrical both longi-
tudinally and laterally and consists of essentially two forward sections of an NACA-0012 airfoil. The elements at the
nose region are picked directly from the coordinates for the NACA-0012 and those in the midsection are obtained by
curve fitting to ensure a convex shape. Since the arrangement of surface vorticity elements may affect the appear-
ance of stationary points, coordinates for one such distribution with 17 elements in the forward quadrant are given in
table 1. Other distributions with more surface elements have also been used in computations and will be discussed
later.
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To show that the appearance of stationary points is not an exclusive property of model A, model B is introduced
in figure 4(b). This is a simpler geometry than model A, consisting of two parallel surfaces and two semicircular
caps. Geometric quantities such as curvatures and tangent lines are known exactly, except at junctions between a
circular arc and a straight line.

4. Computational Procedure

Models in figure 4 all lie in the upper half plane with a dashed line at y = 0 to denote the ground surface. The
existence of the ground surface is equivalent to imposing an image system in the lower half plane. Most calculations
in this investigation were performed in the upper half plane with the image system included in the influence coeffi-
cients in equations (3). See, for example, Lewis for details. A few sample cases were, however, obtained in the en-
tire space to verify the correctness of the half-plane method.

Information needed for computation is as follows. The vortex strength is of unity and the sense is negative
(counter-clockwise). It moves from left to right. The time step for a regular run is 0.00375, but it may be reduced to
less than 0.000375 if necessary. The computational procedures for two or more vortices are essentially the same as
those for a single vortex.

Under the conditions that the vortex is not near the body and the ratio of the local thickness to the length of
local element is greater than 0.64 (an empirical quantity by Lewis), accurate numerical solutions can be expected.
This ratio is amply satisfied in the present investigation. However, if a vortex moves close to the surface, inaccurate
solutions begin to appear. Thus, steps have to be taken to alleviate this problem. Fortunately, stationary points
present in the present study are not very near the surface. Nonetheless, we still gave heed to Lewis’ precautions. For
instance, we made sure that the ratio between the distance from the vortex to the surface and the length of the local
element was much greater than 2.0, and the net circulation around the body perimeter due to the externally located
vortex was zero in accordance with Kelvin’s theorem. If the latter condition was not satisfied, an adjustment was
made either according to Lewis’ treatment (Chap. 8) or by distributing the unbalanced circulation evenly among all
surface elements.

5. Results and Discussion

5.1. Models A and B with a Single Moving Vortex

Based on the surface element distribution given in table 1, a series of computations for a moving vortex was
made, whose results were plotted in figure 5 in the form of a trajectory map. The dotted lines (short dashed lines)
represent vortex paths and the long dashed line at the bottom refers to the ground surface. A vortex in the space
above the topmost dotted line can slide over the upper body smoothly with some distortion near the surface. Below
this line there are two distinct regions, where vortex paths converge to two stationary points. A vortex anywhere in
the upper region will converge to the upper stationary point and be trapped there. Likewise, a vortex in the lower
region will be trapped by the lower stationary point.

The convergence process to the stationary point is somewhat analogous to the convergence of an infinite series.
As a vortex comes close to the stationary station, the translational velocity approaches zero (10–8~10–12) in the limit
and each translational distance is smaller than the one before it.

The fact that a moving vortex in various upstream positions converges spontaneously to the stationary point is
somewhat unexpected. One may, therefore, assume that this stationary point is also an equilibrium point. To put it to
a test, we displaced a vortex to various arbitrary locations around the stationary point and computed their paths. The
finding that these paths all converged to the stationary point in the cases tested is an indication that this assumption
is probably correct.

In the computations for figure 5, no values of bound circulation or the Kutta conditions were imposed. As a
result, the calculated circulations around two bodies were not zero and were, in fact, a part of the solution. By speci-
fying different values of bound circulations, it is possible to obtain different solutions. These solutions were found to
contain no stationary point. Therefore, it seems that for a set of surface elements distributed around an inlet-like
device such as model A, there is only one solution that accommodates stationary points.
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Lewis’ corrective measures stated previously were all adopted here. To satisfy Kelvin’s theorem of zero net
circulation in a closed loop exterior to a vortex for model A in figure 5, the unbalanced circulation for one case was
made to be zero by adjusting the vorticity values on two surface elements nearest to the final position of the station-
ary vortex. However, in all subsequent computations the unbalanced circulation was distributed equally among sur-
face elements. This latter procedure is deemed to be more reasonable, since we deal with moving vortices especially
in the case of spinning. Note that imposing Kelvin’s theorem for zero circulation is not the same as making the
bound circulation to be zero. (See Lewis, 1991 for details.)

The numerical experiments conducted so far seem to indicate that the appearance of stationary points depends
not only on the geometry of the device but also on the arrangement of surface elements. For instance, one can
reconfigure the surface element distribution by decreasing or increasing the number of elements or re-arranging
elements. Moreover, even though the geometry is symmetric, the element distribution does not have to be. We
examined all these cases and found that the locations of stationary points were not fixed. A different distribution
would result in a different set of stationary points. Although the new locations are in general only slightly different
from those in figure 5, the connecting vortex paths can be substantially dissimilar. In one of these cases with 82 ele-
ments per body, there was only one stationary point situated right in front of the lower body somewhat like a stagna-
tion point. For this reason, it is felt that the existence of stationary points is not an exclusive property of the
geometry. This raises the question whether stationary points can be easily observed in an experiment by simply in-
stalling a device like model A or B.

To demonstrate that geometries other than model A can also accommodate stationary points, a trajectory map
for model B with 94 elements per body is plotted in figure 6. This figure is seen to be rather similar to figure 5. As in
the previous case, we also re-configured the element distribution and reached the similar conclusion of shifting sta-
tionary points. Furthermore, in one case with 126 elements per body, no stationary point was found. This notwith-
standing, we believe that there is sufficient evidence to suggest that some sets of vorticity elements distributed
around model B are capable of producing stationary points in the flow field.

5.2 Vortex in a Uniform Free Stream Velocity

The trajectory maps in figures 5 and 6 were based on the assumption that the body of fluid is motionless at in-
finity. To remove this restriction and to see the effect of including the free stream velocity, we repeated the neces-
sary computations with the free stream velocity added. Using the free stream velocity U∞ as the reference velocity,
we can add a term in equation (1) to become
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where z in the last term represents the free stream velocity.
Choosing the free stream to be unity, the vortex strength to be –1.5, and the remaining conditions to be the same

as for figure 6, we carried out the calculations and plotted the results in figure 7. The similarity between figures 6
and 7 is obvious with stationary points approximately at the same locations. The passageway between the space of
two bodies in figure 7 is, however, considerably larger. Therefore, the chance for a vortex being trapped is reduced.
Note that this is a rather intense vortex. As its strength decreases, the regions, in which vortex paths converge to the
stationary points, will contract and eventually disappear altogether.

5.3 Model A with Two or Three Moving Vortices

In the above we presented trajectory maps for two different models, which have the capability of trapping a
single moving vortex. It would be of interest to see whether this capability remains effective as two or more vortices
are introduced. The answer is affirmative as indicated by the sample cases in figures 8 to 10. No trajectory maps are,
however, given, partly because of the difficulty of laying out a map with multiple vortices. The surface element
distribution adopted for these computations was somewhat different from that used for figure 5. The present
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distribution had 90 elements per body instead of 66 elements per body. The purpose is simply to show that both
distributions accommodate stationary points.

The vortices shown in these figures are of equal strength and of the same sense. Therefore, they rotate about the
centroid at a constant speed and move nearly parallel to the ground surface from left to right initially, since the pres-
ence of the device is only scantly felt. This is the reason that the trajectories far from the device are equally coiled.
For a group of two or more vortices placed uniformly around the circumference of a circle of  radius a and in a free
space of still fluid, they will undergo circular motions at a constant angular velocity Ω given by the equation
(Saffman, 1992, Chap. 7)

Ω Γ= −( )n
a

1
4

62π
, ( )

where n is the number of vortices and Γ is the strength.
We first study the fate of a pair of spinning vortices moving from left to right. Four sets of these trajectories

were depicted in figures 8 and 9, two in each figure. As in earlier cases for a single vortex, each set was computed
separately. The purpose of figure 8 is to show that the stationary points for a pair lie approximately at the same
places as in figure 5, and the purpose of figure 9 is to demonstrate that two pairs of vortices can converge to the
same stationary point much like a single vortex. In figure 8 the vortex strength of these two pairs is the same but the
separation distances are different. Thus, the upper pair spins slower than the lower pair. We regard the two dark
disks to be the stationary stations, because at these stations the forward motion of the centroid ceases, but the vorti-
ces continue to rotate. If the centroid wobbles a little and the spinning radius changes a little, the vortex paths after a
long period of time cover the entire area, which then becomes black. (The vortex strength and the time step chosen
for these two cases were unity and 0.001875 respectively.)

We now consider the case of three like-signed vortices of  the equal strength with the angular velocity given by
equation (6). This is a triad of spinning vortices much like a pair of spinning vortices. The uniform coiling of
upstream vortex trajectories in figure 10 attests to this assertion. Two sets of initial conditions for these triads were
selected to lay claim that they will be captured like a single vortex. This is shown in figure 10. Finally, it is noted
parenthetically that similar trajectory patterns for spinning vortices, though not shown, have been obtained for
model B.

6. Concluding Remarks

It is seen in the above that stationary points can occur in two types of inlet-like devices. The geometry of the
device appears to play a more important part in determining the existence of stationary points, but the role of the
element distribution pattern cannot be neglected. It is not, however, clear at this stage the relationship between these
two or how to separate one from the other. Further study is needed.

Since both models can accommodate stationary points, it is reasonable to assume that there are other configura-
tions that have the similar property.

Although the space between two bodies and the height of the lower body from the ground surface were fixed at
70 and 50 percent body length in the present study, different values of these lengths have been examined. As far as
the space between two bodies is concerned, it can be as large as 1.5 times body length and still accommodate sta-
tionary points.

The trajectory maps in figures 5 to 7 point to the fact that there are two zones, one for each body. Thus, there is
a likelihood that three or more bodies can be stacked together to produce three or more zones with one stationary
point for each body.

The preceding evidence suggests that two or three spinning vortices can have similar characteristics of a single
vortex. Therefore, it is possible that some of the present findings are valid for a vortex with a finite core, since a
group of spinning vortices bears some resemblance to a vortex with a finite core.
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TABLE 1.—COORDINATES FOR
MODEL A ON THE FORWARD

QUADRANT
x y

0.0020000
.0050000
.0080000
.0120000
.0180000
.0360000
.0700000
.1000000
.1300000
.1600000
.2050000
.2500 
.3000
.3500
.4000
.4500
.5000

0.0078146
.0122131
.0153151
.0185770
.0224718
.0308125
.0408627
.0468276
.0511933
.0544181
.0576546
.0598
.0619
.06327
.0641
.06467
.06483
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Figure 1.—A pair of spinning vortices trapped by an 
   inlet-like device as it moves from left to right. 
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Figure 2.—Surface vorticity elements on a 
   two-dimensional body.
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Figure 3.—Lower-half trajectories of an ideal vortex
   pair approaching an orifice.

Sheffield's exact solution
Present numerical results

Figure 4.—Geometry of an inlet-like device. 
   (a) Model A. (b) Model B.
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Figure 5.—Vortex trajectory map with model A for a
   single vortex moving from left to right.
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Figure 6.—Vortex trajectory map with model B for a
   single vortex moving from left to right.
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Figure 7.—Vortex trajectory map with model B for a
   single vortex moving from left to right in a uniform
   stream flowing from left to right. Vortex strength
   = –1.5.
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Figure 8.—A pair of spinning vortices trapped by 
   model A as it moves from left to right from two 
   different initial positions.
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Figure 9.—A pair of spinning vortices trapped by 
   model A as it moves from left to right from two 
   different initial positions.
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Figure 10.—A triad of spinning vortices trapped by 
   model A as it moves from left to right from two 
   different initial positions.
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